
Instructions & User Guide
Hello, Creative Adventurer!

The Dar k engine is a tool that you can use to create Android, iOS, and web app versions of your own interactive stories.

By s t or ie s , we mean that you will use images and/or text to depict characters or events that change as the story progresses.

By in t e r act ive , we mean that the story's progression will be influenced by the way that the person reading your story uses the app (i.e. where

they move their finger or mouse pointer).

Check out the video above to see what these stories will look like. Better yet, click on the A lice , Cow, or M in i button in the navigation bar to

the left to experience one of these stories for yourself.

Without further ado, here's how to use Dar k:

1. Read through this entire document.

2. Download Dar k, by clicking on the pink button to the left. Then, open up that folder. You will find five things inside:

A s t or ie s folder.

An e n g in e folder.

A Cr e at e program.

A Ne w St or y program.

A U s e r Gu ide file, which is identical to the document you are currently reading.

3. Double-­click on the Ne w St or y icon to run the program. It will prompt you to type in the name that you would like to give your new story.

It will then create a folder for your new story within the s t or ie s folder.

4. Look inside the folder for your new story and open the code .t xt file in a plain text editor of your choice, such as Te xt Edit .

5. Be sure to add all of the image and audio files necessary for your story to your story's img and mu s ic folders.

6. When your story is ready, double-­click on the Cr e at e icon, select the name of your story, and then select the type of app (i.e. Android,

iOS, or web) that you would like to make. You will then find these newly-­created apps in your story's ou t pu t folder.

The rest of this document explains St e p #4 in greater detail.

Feel free to experiment and play with the three demo stories (A lice , Cow, and M in i), located both inside the s t or ie s folder you downloaded

and also in the navigation bar to the left.

System Requirements
All you need is a M ac computer with Py t h on installed. You can download Python here (https://www.python.org/downloads/).

Introduction
Each code .t xt file needs exactly one GRID line, at least one SCENE line, and at least one LOGIC line. Don't worry about what GRID ,

SCENE , and LOGIC mean yet -­-­ we'll explain them in a little while.

For now, all you need to know is that these three types of code lines are similar in that they are each composed of a label (e.g. GRID , SCENE , or

LOGIC), followed by a series of components. Each component must contain a keyword and a value, separated by an equals sign. Multiple

components of a GRID , SCENE , or LOGIC line should be separated by colons.

Here's the general format of a line of code:

LABEL : KEYWORD = VALUE : KEYWORD = VALUE

Now, here's an example of a line of code that uses a real label, keywords, and values:

https://www.python.org/downloads/

GRID : COLUMNS = 4 : ROWS = 3

In the example above, the label is GRID , the 1st component sets the value of COLUMNS to 4 , and the 2nd component sets the value of ROWS

to 3 . COLUMNS and ROWS are keywords specific to GRID lines. We'll explain more about GRID lines in the next section.

The number of spaces or tabs between words, colons, and equal signs never matters. It also doesn’t matter what order you list the components,

so long as the label of the line always comes first. So, an equally valid line of code is listed below:

GRID: ROWS= 3 : COLUMNS= 4

Finally, you also have the option of only using the first letter of keywords. So, you can rewrite the above example like this:

GRID : R = 3 : C = 4

You are encouraged to write your code in whichever format is easiest for you.

Coding GRID Lines
In order to place the text and images that make up your story in particular positions on the screen of your app, you will have to refer to locations

on a grid. The GRID line code sets the total number of ROWS and COLUMNS that in the grid the the screen. For example, if your app contains 3

rows and 4 columns, you could place a character in the top-­left corner by refering to the 1st row and 1st column. Alternatively, you could instead

place the character in the bottom-­right corner by refering to the 3rd row and 4th column.

Here's an example of a GRID line of code that establishes very few rows and columns:

GRID: C= 2 : R= 1

In contrast, here's a GRID line that uses a rather large grid:

GRID: C= 10 : R= 8

Keep in mind that the circular spotlight that follows the user's finger or mouse pointer when reading your story will be resized to match the

size of a single grid box, so the more rows and columns you use, the smaller the individual grid boxes and the user's spotlight will be. You are

encouraged to play through the M in i and Cow demos on the left side of this page, to experiment with the effects of changing the number of

rows and columns. The Cow demo uses 3 rows and 4 columns while the M in i demo uses only 1 row and 2 columns. Consequently, the spotlight

in the M in i demo is much larger.

In order to help you visualize the organization of your app's grid and how to refer to locations inside it, below are two 'maps' of differently sized

grids.

Below is a map of how a grid with 1 row and 2 columns would be organized:

(1, 1) (2, 1)

In contrast, here is a map of a grid with 3 rows and 4 columns:

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 3) (2, 3) (3, 3) (4, 3)

Dar k uses the convention of always listing the number of columns before the number of rows in parentheses. For example, (1, 2) indicates

the 1st column and 2nd row while (2, 1) refers to the 2nd column and 1st row.

Coding SCENE Lines
Now, it is time for you to code the first scene of your story.

Each scene needs to start with a SCENE line, which must have at least two components: a NAME and a BACKGROUND . You also have the option

of adding MUSIC .

The NAME of your scene can be anything you want, but the BACKGROUND must be identical to that of an image file that is saved in your img

folder.

Below is an example of a SCENE line without MUSIC :

SCENE: NAME = My First Scene : BACKGROUND = myBackground.jpg

Now, here is an example of the same SCENE line with MUSIC :

SCENE: NAME = My First Scene : BACKGROUND = myBackground.jpg : MUSIC = myMusic.mp3

Coding LOGIC Lines
Finally, you should add some interactivity to your scene. To do this, you must add a few LOGIC lines. Each LOGIC line typically uses three

components: a NAME , a CAUSE , and an EFFECT ; however, there are some special cases, which we will discuss shortly, in which you might

want to use alternative components.

LOGIC lines can either be ACTIVE or INACTIVE . INACTIVE logics do nothing whereas ACTIVE ones usually display images on the screen

that describe a specific event in your story. These images are chosen by using the CAUSE component. You can also use LOGIC lines to activate

the next event or LOGIC in your story, by using the EFFECT component.

For example, below is an initially ACTIVE LOGIC line, called Question , that displays howAreYou.png on the screen. Once the user moves

their finger or mouse pointer over the image, they will activate another LOGIC line, called Answer . Don't worry about the details of this line

of code yet, since we will soon explain each component of it in greater detail.

LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(1, 1) : EFFECT = Answer->ACTIVE

Now, here is another LOGIC , called Answer , which does nothing yet because it is initially INACTIVE ; however, once another LOGIC

activates it, such as the one called Question above, then it will display fantastic.png on the screen. Once the user views this image, the

LOGIC called Next Question will be activated.

LOGIC: NAME = Answer->INACTIVE : CAUSE = fantastic.png->(2, 1) : EFFECT = Next Question->ACTIVE

In this way, LOGIC lines are used to control the chain of events that occur in your story.

NAME
Just like with SCENE lines, the NAME of your LOGIC line can be anything you want; however, no two lines can have the same name. To set

the initial activation state, you should type an arrow (->) next to the name that points to either ACTIVE or INACTIVE .

Below is an ACTIVE LOGIC :

LOGIC: NAME = First Logic->ACTIVE

In contrast, here’s an INACTIVE LOGIC :

LOGIC: NAME = Second Logic->INACTIVE

You should always have at least one LOGIC that is initially ACTIVE . Otherwise, nothing will ever appear in your story other than the

background image.

CAUSE
The CAUSE of your LOGIC is an image that will appear on the screen only when the LOGIC is ACTIVE . To set the location of the image on

the screen, you must type an arrow (->) pointing the column and row number where you would like the image to appear. The coordinates

should be enclosed in parentheses and separated by a comma, just like the notation used in the maps shown earlier. Re me mbe r : the number

of columns always comes before the number of rows.

The following LOGIC shows howAreYou.png in the 1st row and 2nd column of the screen:

LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(2, 1)

In contrast, the example below shows the same image in the 2nd row and 1st column:

LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(1, 2)

You may absolutely make more than one image appear at once, but you must always have at least one spot on the screen empty at all times. So, if

you are using a tiny grid with only 2 boxes (as is the case in the M in i demo), you can only use one image in the CAUSE componenent of the

LOGIC line, since there are only 2 grid boxes total.

Below is a LOGIC line that displays two images in two different places:

LOGIC: NAME = Busy Logic->ACTIVE : CAUSE = image1.png->(1, 2), image2.png->(2, 2)

EFFECT
Each LOGIC line will most likely also have an EFFECT triggered by the user’s spotlight landing on all of the images listed in the CAUSE

component. This EFFECT would be to either activate or deactivate another LOGIC . To code this you should type out the name of the other

LOGIC that you hope to affect, followed by an arrow to either ACTIVE or INACTIVE .

The LOGIC line below, called First Event , activates Second Event only if myImage.png is viewed:

LOGIC: NAME = First Event->ACTIVE : CAUSE = myImage.png->(1,1) : EFFECT = Second Event->ACTIVE

Once Second Event is activated by viewing myImage.png , First Event will automatically get deactivated. If you want First Event to

stay ACTIVE even after it activates Second Event , you have to code it like this, instead:

LOGIC: NAME = First Event->A : CAUSE = myImage.png->(1,1) : EFFECT = Second Event->A, First Event->A

As exemplified above, any LOGIC can activate or deactivate as many other LOGIC lines as you want. Simply add them to the list. As you can

see, single-­letter shortcuts for ACTIVE were used in that example too. This is just a matter of personal preference.

Finally, here's an example of a LOGIC that deactivates another LOGIC :

LOGIC: NAME = First Event->ACTIVE : CAUSE = myImage.png->(1,1) : EFFECT = Second Event->INACTIVE

ORDERED
If you have more than one image listed in the CAUSE component of your LOGIC line, you can specify the order in which they must be viewed

in order to trigger the associated EFFECT . To do this, simply add ORDERED as a component in your LOGIC line. This will make it so that the

images must be viewed in the order in which they are listed.

For example, a normal, unordered LOGIC line looks like this:

LOGIC: NAME = First Event->A : CAUSE = image1.png->(1,1), image2.png->(2,1) : EFFECT = Second Event->A

In the line above, as long as both images are viewed (in any order), viewing them will activate Second Event .

In contrast, the line below requires that image1.png be viewed before image2.png , in order for Second Event to activate. Otherwise,

nothing will happen, and First Event will remain ACTIVE while Second Event remains INACTIVE .

LOGIC: N = First Event->A : C = image1.png->(1,1), image2.png->(2,1) : E = Second Event->A : ORDERED

DEPENDENT
If you are trying to create a more complicated story or game that would require multiple LOGIC lines to be ACTIVE simultaneously before

their EFFECT occurs, then you can use the DEPENDENT component. Simply list the names of the other LOGIC lines that you want the

current LOGIC to be DEPENDENT on.

For example, in the following LOGIC line, First Event is ACTIVE , so myImage.png appears on the screen; however, viewing

myImage.png only activates Forth Event if Second Event and Third Event (defined in separate LOGIC lines) are simultaneously

ACTIVE :

LOGIC: N = First Event->A : C = myImage.png->(1,1) : E = Forth Event->A : DEPENDENT = Second Event, Third Event

MUSIC
If you would like viewing the LOGIC images to change the music in the scene, then you should use the MUSIC component. All you have to do

is type out the name of the audio file that you want to start playing, like this:

LOGIC: NAME = Change Music->A : CAUSE = myImage.png->(1,1) : MUSIC = newMusic.mp3

In the example above, viewing myImage.png will change the music to newMusic.mp3; however, it is also possible to both change the music and

activate another LOGIC , like this:

LOGIC: NAME = First Event->A : CAUSE = myImage.png->(1,1) : EFFECT = Second Event->A : MUSIC = newMusic.mp3

SCENE & TRANSITION
Finally, at the end of your scene, you should write a LOGIC line that will change the current scene to the next one, even if the current scene is

the last or the only scene of your story. This LOGIC line must contain a SCENE component and a TRANSITION component.

The SCENE should simply be a name that matches one that you will use in a SCENE line somewhere else in your code .t xt file, like this:

LOGIC: N = End of Scene->A : C = myImage.png->(1,1) : SCENE = Second Scene : TRANSITION = transition.jpg->DOWN

The example above starts Second Scene after myImage.png is viewed. It assumes that somewhere in your code .t xt file you have also

written a line of code that looks like this:

SCENE: NAME = Second Scene : BACKGROUND = myBackground.jpg

If you want the current scene, called First Scene , to repeat itself rather than changing to a different scene, simply set the value of SCENE

to the name of the current scene, like this:

LOGIC: N = End of Scene->A : C = myImage.png->(1,1) : S = First Scene : T = transition.jpg->DOWN

The TRANSITION should equal the name of an image in your img folder, which you want to appear in between showing the background of this

scene and the background of the next scene. This TRANSITION should also have an arrow pointing in the direction that the scene transition

will occur in. Your choices are UP , DOWN , LEFT , and RIGHT .

For example, the LOGIC coded above transitions downwards because it uses an arrow that points to DOWN . This means that

transition.jpg enters from the top of the screen and travels DOWN the screen until it disappears off the bottom of the screen.

Alternatively, the example below will show transition.jpg travelling from the left side of the screen to the right side of the screen. In other

words, the arrow always points to when you want the final destination of the image to be -­-­ in this case, the far RIGHT of the screen.

LOGIC: N = End of Scene->A : C = myImage.png->(1,1) : S = First Scene : T = transition.jpg->RIGHT

Putting It All Together
Now, let's take a look at how everything ties together by coding an entire (tiny) story, line by line. Below you'll find the code that was used to

generate the M in i demo, which you should quickly play through right now, by clicking on the pink button to the left.

(1) GRID: COLUMNS = 2 : ROWS = 1

(2) SCENE: NAME = Mini Demo : BACKGROUND = miniBackground.jpg : MUSIC = miniMusic.mp3

(3) LOGIC: N = First Event->A : C = Hello.png->(1,1) : E = Second Event->A

(4) LOGIC: N = Second Event->I : C = Hey.png->(2,1) : E = Third Event->A

(5) LOGIC: N = Third Event->I : C = HowAreYou.png->(1,1) : E = Forth Event->A

(6) LOGIC: N = Forth Event->I : C = Fantastic.png->(2,1) : E = Fifth Event->A

(7) LOGIC: N = Fifth Event->I : C = MeToo.png->(1,1) : E = Last Event->A

(8) LOGIC: N = Last Event->I : C = Yay.png->(2,1) : S = Mini Demo : T= miniTransition.jpg->DOWN

1. This GRID line establishes the size of the grid that the story will use: 2 columns and 1 row. This means that the screen will essentially

be split in half horizontally, and the user's spotlight will be so large that it will span half of the screen.

2. This SCENE line first names the scene Mini Demo , loads the background image called miniBackground.jpg , and then starts playing

the music file called miniMusic.mp3 .

3. This LOGIC line defines First Event , which starts out as ACTIVE . This means that at the beginning of the scene, its image

Hello.png will already be visible. The (1,1) indicates that the image will show up on the left half of the screen (i.e. the 1st column and

1st row). Finally, we also know that viewing this image will have the effect of activating Second Event .

4. Lines 4 through 7 are quite similar to the LOGIC in line #3, except that they start out as INACTIVE , which means that their images will

not show up until something activates them. Specifically, line #4 shows that once Second Event is activated, it will present the image

Hey.png in location (2,1) -­ that is, on the right half of the screen. Once clicked, this image image will activate Third Event .

5. The next LOGIC line behaves the same way, except that it displays HowAreYou.png on the left half of the screen.

8. Lastly, line #8 will show Yay.png on the right half of the screen. When the image is viewed, the scene will repeat because Mini Demo is

chosen as the next scene. But, before the scene resets, the image miniTransition.jpg will slide DOWN the screen.

Phew, You Made It!
Thank you for reading through this rather lengthy set of instructions.

You are now ready to begin creating your own adventures inside of your own code .t xt file.

I hope that this document has been helpful. If you are confused about anything, or if you have any questions at all, please do not hesitate to

email Er ica Silve r s t e in at e .o.s ilve r s t e in @g mail.com.

