Instructions & User Guide

Hello, Creative Adventurer!
The Dark engine is atool that you can use to create Android, iOS, and web app versions of your own interactive stories.
By stories, we mean that you will use images and/or text to depict characters or events that change as the story progresses.

Byinteractive, we mean that the story's progression will be influenced by the way that the person reading your story uses the app (i.e. where

they move their finger or mouse pointer).

Checkout the video above to see what these stories will look like. Better yet, clickon the Alice, Cow, or Mini button in the navigation bar to

the left to experience one of these stories for yourself.
Without further ado, here's how to use Dark:

1. Read through this entire document.
2. Download Dark, by clicking on the pink button to the left. Then, open up that folder. You will find five things inside:
o Astories folder.
« Anengine folder.
« ACreate program.
« ANew Story program.
o AUser Guide file, which is identical to the document you are currently reading.
3. Double-clickon the New Story icon torun the program. It will prompt you to type in the name that you would like to give your new story.
It willthen create afolder for your new story within the stories folder.
4. Lookinside the folder for your new story and open the code.txt file in a plain text editor of your choice, such as TextEdit.
5. Be sure to add all of the image and audio files necessary for your story to your story'simg and music folders.
6. When your story is ready, double-click on the Create icon, select the name of your story, and then select the type of app (i.e. Android,

iOS, or web) that you would like to make. You will then find these newly-created apps in your story's output folder.
The rest of this document explains Step #4 in greater detail.

Feelfree to experiment and play with the three demo stories (Alice, Cow, and Mini), located both inside the stories folder you downloaded

and also in the navigation bar to the left.

[
System Requirements
Allyou needisaMac computer with Python installed. You can download Python here (https://www.python.org/downloads/).

Introduction

Each code.txt file needs exactly one GRID line, atleast one SCENE line, and atleastone LOGIC line.Don't worry about what GRID ,

SCENE ,and LOGIC mean yet-- we'llexplain them in alittle while.

For now, allyou need to know is that these three types of code lines are similar in that they are each composed of alabel (e.g. GRID , SCENE , or
LOGIC), followed by aseries of components. Each component must contain a keyword and avalue, separated by an equals sign. Multiple

componentsofa GRID , SCENE ,or LOGIC line should be separated by colons.

Here's the general format of aline of code:
LABEL : KEYWORD = VALUE : KEYWORD = VALUE

Now, here's an example of aline of code that uses areal label, keywords, and values:

https://www.python.org/downloads/

GRID : COLUMNS = 4 : ROWS = 3

In the example above, the labelis GRID , the Ist component sets the value of COLUMNS to 4 , andthe 2nd component sets the value of ROWS

to 3 . cOLUMNS and ROWS are keywords specificto GRID lines.We'llexplain more about GRID linesin the nextsection.

The number of spaces or tabs between words, colons, and equal signs never matters. It also doesn’t matter what order you list the components,

solong as the label of the line always comes first. So, an equally valid line of code is listed below:

GRID: ROWS= 3 : COLUMNS= 4

Finally, you also have the option of only using the first letter of keywords. So, you can rewrite the above example like this:

GRID : R

]
w
(@]

Il
'S

You are encouraged to write your code in whichever format is easiest for you.

Coding GRID Lines

In order to place the text and images that make up your story in particular positions on the screen of your app, you will have to refer to locations
onagrid. The GRID line code setsthe totalnumber of ROWS and cOLUMNS thatinthe gridthe the screen.For example, if your app contains 3
rows and 4 columns, you could place a character in the top-left corner by refering to the 1st row and 1st column. Alternatively, you could instead

place the character in the bottom-right corner by refering to the 3rd row and 4th column.

Here's an example ofa GRID line of code that establishes very few rows and columns:
GRID: C= 2 : R= 1

In contrast, here'sa GRID line that usesarather large grid:
GRID: C= 10 : R= 8

Keep in mind that the circular spotlight that follows the user's finger or mouse pointer when reading your story will be resized to match the
size of asingle grid box, so the more rows and columns you use, the smaller the individual grid boxes and the user's spotlight will be. You are
encouraged to play through the Mini and Cow demos on the left side of this page, to experiment with the effects of changing the number of
rows and columns. The Cow demo uses 3rows and 4 columns while the Mini demo uses only 1row and 2 columns. Consequently, the spotlight

in the Mini demo is much larger.

In order to help you visualize the organization of your app's grid and how to refer to locations inside it, below are two 'maps’ of differently sized

grids.
Below is a map of how a grid with 1row and 2 columns would be organized:

(1, 1) (2, 1)

In contrast, here is amap of agrid with 3rows and 4 columns:

(1, 1) (2, 1) (3, 1) (4, 1)
(1, 2) (2, 2) (3, 2) (4, 2)
(1, 3) (2, 3) (3, 3) (4, 3)

Dark usesthe convention of always listing the number of columns before the number of rows in parentheses. For example, (1, 2) indicates

the 1st column and 2nd row while (2, 1) referstothe 2nd column and Ist row.

Coding SCENE Lines

Now, it is time for you to code the first scene of your story.

Each scene needs tostart witha SCENE line, which must have at least two components: a NAME anda BACKGROUND .You also have the option

of adding MusIC .

The NAME of your scene can be anything you want, butthe BACKGROUND must be identical to that of an image file that is saved in your img
folder.

Below is an example ofa SCENE line without MUSIC :
SCENE: NAME = My First Scene : BACKGROUND = myBackground.jpg
Now, here is an example of the same SCENE line with MusIC :

SCENE: NAME = My First Scene : BACKGROUND = myBackground.jpg : MUSIC = myMusic.mp3

Coding LOGIC Lines

Finally, you should add some interactivity to your scene. To do this, you mustaddafew LOGIC lines.Each LoOGIC line typically usesthree
components:a NAME ,a CAUSE ,andan EFFECT ; however, there are some special cases, which we will discuss shortly, in which you might

want to use alternative components.

LOGIC linescan either be ACTIVE or INACTIVE . INACTIVE logicsdonothingwhereas ACTIVE onesusually display imageson the screen
that describe a specificevent in your story. These images are chosen by usingthe CAUSE component.You can alsouse LOGIC linesto activate

the next eventor LOGIC inyour story, by usingthe EFFECT component.

For example, below is an initially ACTIVE LOGIC line, called Question ,thatdisplays howAreYou.png onthe screen.Once the user moves
their finger or mouse pointer over the image, they will activate another LOGIC line, called Answer .Don't worry about the details of this line

of code yet, since we will soon explain each component of it in greater detail.
LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(1l, 1) : EFFECT = Answer->ACTIVE
Now, here isanother LOGIC ,called Answer , which doesnothingyet because itisinitially INACTIVE ; however, once another LOGIC
activatesit, such asthe one called Question above, then it willdisplay fantastic.png onthe screen.Once the user views thisimage, the
LOGIC called Next Question will be activated.

LOGIC: NAME = Answer->INACTIVE : CAUSE = fantastic.png->(2, 1) : EFFECT = Next Question->ACTIVE

In thisway, LOGIC linesare usedto controlthe chain of eventsthat occur in your story.

NAME

Just like with SCENE lines, the NAME of your LOGIC line can be anything you want; however, no two lines can have the same name. To set

the initial activation state, you should type an arrow (->) next to the name that points to either ACTIVE or INACTIVE .

Belowisan ACTIVE LOGIC :
LOGIC: NAME = First Logic->ACTIVE
In contrast, here’san INACTIVE LOGIC :

LOGIC: NAME = Second Logic->INACTIVE

You should always have at least one LOGIC thatisinitially ACTIVE .Otherwise, nothing will ever appear in your story other than the

background image.

CAUSE

The CAUSE ofyour LOGIC isanimage that willappear on the screen only whenthe LOGIC is ACTIVE .To setthe location of the image on
the screen, you must type an arrow (->) pointing the column and row number where you would like the image to appear. The coordinates
should be enclosed in parentheses and separated by a comma, just like the notation used in the maps shown earlier. Remember: the number

of columns always comes before the number of rows.

The following LOGIC shows howAreYou.png inthe Istrowand2nd column of the screen:
LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(2, 1)

In contrast, the example below shows the same image in the 2nd row and 1st column:
LOGIC: NAME = Question->ACTIVE : CAUSE = howAreYou.png->(1, 2)

You may absolutely make more than one image appear at once, but you must always have at least one spot on the screen empty at all times. So, if
you are using atiny grid with only 2 boxes (as is the case in the Mini demo), you can only use one image in the CAUSE componenent of the

LOGIC line, since there are only 2 grid boxes total.

Belowisa LOGIC line that displays two images in two different places:

LOGIC: NAME = Busy Logic->ACTIVE : CAUSE = imagel.png->(1, 2), image2.png->(2, 2)

EFFECT

Each roGIC line willmostlikely also have an EFFECT triggeredby the user’s spotlight landing on all of the imageslistedin the CAUSE
component. This EFFECT would be to either activate or deactivate another LOGIC .To code this you should type out the name of the other

LOGIC thatyou hope to affect, followed by an arrow to either ACTIVE or INACTIVE .

The LoGIC line below, called First Event , activates Second Event onlyif myImage.png isviewed:
LOGIC: NAME = First Event->ACTIVE : CAUSE = myImage.png->(1l,1) : EFFECT = Second Event->ACTIVE

Once Second Event isactivated by viewing myImage.png , First Event willautomatically get deactivated.If you want First Event to

stay ACTIVE even after itactivates Second Event , you have to code it like this, instead:
LOGIC: NAME = First Event->A : CAUSE = myImage.png->(1l,1) : EFFECT = Second Event->A, First Event->A
As exemplified above, any LOGIC can activate or deactivate as many other LOGIC linesasyou want.Simply add them to the list. As you can

see, single-letter shortcuts for ACTIVE were usedin that example too. This isjust amatter of personal preference.

Finally, here's an example ofa LOGIC that deactivates another LOGIC :

LOGIC: NAME = First Event->ACTIVE : CAUSE = myImage.png->(1,1) : EFFECT = Second Event->INACTIVE

ORDERED

If you have more than one image listed in the CAUSE component of your LOGIC line, you can specify the order in which they must be viewed
in order to trigger the associated EFFECT .Todo this, simply add ORDERED asacomponentinyour LOGIC line.This will make it so that the

images must be viewed in the order in which they are listed.

For example, anormal, unordered LOGIC line looks like this:

LOGIC: NAME = First Event->A : CAUSE = imagel.png->(1,1), image2.png->(2,1) : EFFECT = Second Event->A

In the line above, as long as both images are viewed (in any order), viewing them will activate Second Event .
In contrast, the line below requires that imagel.png beviewedbefore image2.png ,inorderfor Second Event toactivate.Otherwise,

nothing willhappen, and First Event willremain ACTIVE while Second Event remains INACTIVE .

LOGIC: N = First Event->A : C = imagel.png->(1,1), image2.png->(2,1l) : E = Second Event->A : ORDERED

DEPENDENT

If you are trying to create amore complicated story or game that wouldrequire multiple LOGIC linestobe ACTIVE simultaneously before
their EFFECT occurs, then you can use the DEPENDENT component.Simply list the names of the other LoGIC linesthat you wantthe
current LOGIC tobe DEPENDENT on.

For example, in the following LOGIC line, First Event is ACTIVE ,so myImage.png appearson the screen; however, viewing
myImage.png only activates Forth Event if Second Event and Third Event (definedin separate LOGIC lines)are simultaneously

ACTIVE :

LOGIC: N = First Event->A : C = myImage.png->(1,1) : E = Forth Event->A : DEPENDENT = Second Event, Third Event

MUSIC

If you would like viewing the LOGIC imagestochange the musicin the scene, then you shoulduse the MUSIC component.Allyou have todo

is type out the name of the audio file that you want to start playing, like this:
LOGIC: NAME = Change Music->A : CAUSE = myImage.png->(1l,1) : MUSIC = newMusic.mp3

In the example above, viewing myImage.png willchange the musictonewMusicmp3; however, it is also possible to both change the musicand

activate another LOGIC , like this:

LOGIC: NAME = First Event->A : CAUSE = myImage.png->(1l,1) : EFFECT = Second Event->A : MUSIC = newMusic.mp3

SCENE & TRANSITION

Finally, at the end of your scene, you should writea LOGIC line that willchange the current scene tothe next one, even if the current scene is

the last or the only scene of your story. This LOGIC line mustcontaina SCENE componentanda TRANSITION component.

The SCENE shouldsimply be aname that matches one thatyou willuseina SCENE line somewhere else in your code.txt file, like this:
LOGIC: N = End of Scene->A : C = myImage.png->(1l,1) : SCENE = Second Scene : TRANSITION = transition.jpg->DOWN

The example above starts Second Scene after myImage.png isviewed.Itassumesthat somewhere in your code.txt file you have also

written aline of code that looks like this:
SCENE: NAME = Second Scene : BACKGROUND = myBackground.jpg

If you want the current scene, called First Scene ,torepeatitself rather than changingto adifferent scene, simply set the value of SCENE

tothe name of the current scene, like this:
LOGIC: N = End of Scene->A : C = myImage.png->(1,1) : S = First Scene : T = transition.jpg->DOWN
The TRANSITION shouldequalthe name of an image in your img folder, which you want to appear in between showing the background of this

scene and the background of the next scene. This TRANSITION shouldalso have an arrow pointing in the direction that the scene transition

will occur in. Your choicesare UP , DOWN , LEFT ,and RIGHT .

For example, the LOGIC coded above transitions downwards because it uses an arrow that pointsto DOWN .This means that

transition.jpg entersfromthe topofthe screenandtravels DOWN the screen untilit disappears off the bottom of the screen.

Alternatively, the example below willshow transition.jpg travellingfrom the left side of the screen to the right side of the screen.In other

words, the arrow always points to when you want the final destination of the image to be -- in this case, the far RIGHT of the screen.

LOGIC: N = End of Scene->A : C = myImage.png->(1,1) : S = First Scene : T = transition.jpg->RIGHT

Putting It All Together

Now, let's take alook at how everything ties together by coding an entire (tiny) story, line by line. Below you'll find the code that was used to

generate the Mini demo, which you should quickly play through right now, by clicking on the pink button to the left.
(1) GRID: COLUMNS = 2 : ROWS = 1

(2) SCENE: NAME = Mini Demo : BACKGROUND = miniBackground.jpg : MUSIC = miniMusic.mp3

(3) LOGIC: N = First Event->A C = Hello.png->(1,1) : E = Second Event->A

(4) LOGIC: N = Second Event->I C = Hey.png->(2,1) : E = Third Event->A

(5) LOGIC: N = Third Event->I C = HowAreYou.png->(1l,1) : E = Forth Event->A

(6) LOGIC: N = Forth Event->I C = Fantastic.png->(2,1) : E = Fifth Event->A

(7) LOGIC: N = Fifth Event->I C = MeToo.png->(1,1) : E = Last Event->A

(8) LOGIC: N = Last Event->I : C = Yay.png->(2,1) : S = Mini Demo : T= miniTransition.jpg->DOWN

1. This GRID line establishesthe size of the grid that the story willuse: 2 columnsand 1 row.This means that the screen will essentially
be split in half horizontally, and the user's spotlight will be so large that it will span half of the screen.
2. This SCENE line first namesthe scene Mini Demo ,loadsthe backgroundimage called miniBackground.jpg , andthen starts playing
the musicfile called miniMusic.mp3 .
3. This LoGIC line defines First Event , which startsoutas ACTIVE .This meansthatat the beginning of the scene, its image
Hello.png willalready be visible. The (1,1) indicatesthatthe image willshow up on the left half of the screen (i.e.the 1st column and
1st row). Finally, we also know that viewing this image will have the effect of activating Second Event .
4. Lines 4 through 7are quite similar tothe LOGIC in line #3, except that they start outas INACTIVE , which means that their images will
not show up until something activates them. Specifically, line #4 shows that once Second Event isactivated, it will present the image
Hey.png inlocation (2,1) -thatis, onthe right half of the screen.Once clicked, thisimage image will activate Third Event .

5. The next LOGIC line behavesthe same way, except that it displays HowAreYou.png on the left half of the screen.

8. Lastly, line #8 willshow Yay.png on theright half of the screen. When the image is viewed, the scene willrepeat because Mini Demo is

chosen as the next scene. But, before the scene resets, the image miniTransition.jpg willslide DOWN the screen.

Phew, You Made It!

Thankyou for reading through this rather lengthy set of instructions.
You are now ready to begin creating your own adventures inside of your own code.txt file.

I hope that this document has been helpful. If you are confused about anything, or if you have any questions at all, please do not hesitate to

email Erica Silverstein ate.o.silverstein@gmail.com.

